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Abstract. In this paper, we introduce a new commuting condition be-
tween the structure Jacobi operator and symmetric (1,1)-type tensor
field T , that is, RξφT = TRξφ, where T = A or T = S for Hopf
hypersurfaces in complex hyperbolic two-plane Grassmannians. Using
simultaneous diagonalization for commuting symmetric operators, we
give a complete classification of real hypersurfaces in complex hyper-
bolic two-plane Grassmannians with commuting condition, respectively.
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1. Introduction

It is one of the main topics in submanifold geometry to investigate immersed
real hypersurfaces of homogeneous type in Hermitian symmetric spaces of
rank 2 (HSS2) with certain geometric conditions. Understanding and clas-
sifying real hypersurfaces in HSS2 is one of important problems in differen-
tial geometry. One of these spaces is the complex two-plane Grassmannian
G2(Cm+2) = SU2+m/S(U2·Um) defined by the set of all complex two-
dimensional linear subspaces in C

m+2. Another one is the complex hyper-
bolic two-plane Grassmannian G∗

2(C
m+2) = SU2,m/S(U2·Um) defined by the

set of all complex two-dimensional linear subspaces in indefinite complex
Euclidean space C

m+2
2 .

These are typical examples of HSS2. Characterizing typical model spaces
of real hypersurfaces under certain geometric conditions is one of our main
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interests in the classification theory in G2(Cm+2) or SU2,m/S(U2·Um) (see
[13,14]).

Our recent interest is the study by applying geometric conditions used
in submanifolds in G2(Cm+2) to submanifolds in SU2,m/S(U2·Um).

G2(Cm+2) = SU2+m/S(U2·Um) has compact transitive group SU2+m;
however, SU2,m/S(U2·Um) has noncompact indefinite transitive group SU2,m.
This distinction gives various remarkable results.

The complex hyperbolic two-plane Grassmannian SU2,m/S(U2·Um) is
the unique noncompact, irreducible, Kähler and quaternionic Kähler manifold
which is not a hyperkähler manifold.

Let M be a real hypersurface in complex hyperbolic two-plane Grass-
mannian SU2,m/S(U2·Um). Let N be a local unit normal vector field on M .
Since the complex hyperbolic two-plane Grassmannians SU2,m/S(U2·Um) has
the Kähler structure J , we may define a Reeb vector field ξ = −JN and a
1-dimensional distribution C⊥ = Span{xi}.

Let C be the orthogonal complement of distribution C⊥ in TpM at p ∈
M . It is the complex maximal subbundle of TpM . Thus, the tangent space of
M consists of the direct sum of C and C⊥ as follows: TpM = C ⊕C⊥. The real
hypersurface M is said to be Hopf if AC ⊂ C, or equivalently, the Reeb vector
field ξ is principal with principal curvature α = g(Aξ, ξ), where g denotes the
metric. In this case, the principal curvature α is said to be a Reeb curvature
of M .

From the quaternionic Kähler structure J = Span{J1, J2, J3} of
SU2,m/S(U2·Um), there naturally exist almost contact 3-structure vector
fields ξν = −JνN , ν = 1, 2, 3. Let Q⊥ = Span{ξ1, ξ2, ξ3}. It is a 3-dimensional
distribution in the tangent space TpM of M at p ∈ M . In addition, Q stands
for the orthogonal complement of Q⊥ in TpM . It is the quaternionic maximal
subbundle of TpM . Thus, the tangent space of M can be split into Q and
Q⊥ as follows: TpM = Q ⊕ Q⊥.

Thus, we have considered two natural geometric conditions for real hy-
persurfaces in SU2,m/S(U2·Um) such that the subbundles C and Q of TM are
both invariant under the shape operator. Using these geometric conditions,
we will use the results in Suh [13, Theorem 1].

On the other hand, a Jacobi field along geodesics of a given Riemannian
manifold (M̄, ḡ) plays an important role in the study of differential geometry.
It satisfies a well-known differential equation which inspires Jacobi operators.
The Jacobi operator with respect to a vector field X on M̄ is defined by
(R̄X(Y ))(p) = (R̄(Y,X)X)(p), where R̄ denotes the curvature tensor of M̄
and X, Y denote any vector fields on M̄ . It is known to be a self-adjoint
endomorphism on the tangent space TpM̄ , p ∈ M̄ . Clearly, each tangent
vector field X to M̄ provides a Jacobi operator with respect to X. Thus, the
Jacobi operator on a real hypersurface M of M̄ with respect to ξ is said to
be a structure Jacobi operator and will be denoted by Rξ. The Riemannian
curvature tensor of M (resp., M̄) is denoted by R (resp., R̄).

For a commuting problem concerned with the structure Jacobi operator
Rξ and the structure tensor φ of a Hopf hypersurface M in G2(Cm+2), that
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is, RξφA = ARξφ, Lee, Suh and Woo [3] proved that a Hopf hypersurface M
satisfying RξφA = ARξφ and ξα = 0 is locally congruent to an open part of
a tube around a totally geodesic G2(Cm+1) in G2(Cm+2). Motivated by this
result, we consider the same condition in the different ambient space, that is,

RξφAX = ARξφX (C-1)

for any tangent vector field X on M in SU2,m/S(U2·Um). The geometric
meaning of RξφAX = ARξφX can be explained in such a way that any
eigenspace of Rξ on the distribution C = {X ∈ TpM |X ⊥ ξ}, p ∈ M , is
invariant under the shape operator A of M in SU2,m/S(U2·Um). Then using
[13, Theorem 1], we give a complete classification of Hopf hypersurfaces in
SU2,m/S(U2·Um) with RξφAX = ARξφX as follows:

Theorem 1. Let M be a Hopf hypersurface in complex hyperbolic two-plane
Grassmannian SU2,m/S(U2·Um), m ≥ 3, satisfying RξφA = ARξφ. If the
Reeb curvature α = g(Aξ, ξ) is constant along the Reeb direction of the struc-
ture vector field ξ, then M is locally congruent to one of the following:

(i) A tube over a totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um)
or

(ii) A horosphere in SU2,m/S(U2·Um) whose center at infinity is singular
and of type JX ∈ JX.

From the Riemannian curvature tensor R of M in SU2,m/S(U2·Um), we
can define the Ricci tensor S of M in such a way that

g(SX, Y ) =
4m−1∑

i=1

g(R(ei,X)Y, ei),

where {e1, · · ·, e4m−1} denotes a basis of the tangent space TpM of M , p∈M ,
in SU2,m/S(U2·Um) (see [15]). Then, we can consider another new commuting
condition

RξφSX = SRξφX (C-2)

for any tangent vector field X on M . That is, the operator Rξφ commutes
with the Ricci tensor S.

Then by [13, Theorem 1], we also give another classification related to
the Ricci tensor S of M in SU2,m/S(U2·Um) as follows:

Theorem 2. Let M be a Hopf hypersurface in complex hyperbolic two-plane
Grassmannian SU2,m/S(U2·Um), m ≥ 3, satisfying RξφS = SRξφ. If the
smooth function α = g(Aξ, ξ) is constant along the direction of ξ, then M is
locally congruent to one of the following:

(i) A tube over a totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um)
or

(ii) A horosphere in SU2,m/S(U2·Um) whose center at infinity is singular
and of type JX ∈ JX.

In this paper, we refer [10,13–15] for Riemannian geometric structures
of complex hyperbolic two-plane Grassmannians SU2,m/S(U2·Um), m ≥ 3.
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2. The Complex Hyperbolic Two-Plane Grassmannian
SU2,m/S(U2·Um)

In this section, we summarize basic materials about complex hyperbolic
two-plane Grassmann manifolds SU2,m/S(U2·Um), for details we refer to
[9,11,13,15]. The Riemannian symmetric space SU2,m/S(U2·Um), which con-
sists of all complex two-dimensional linear subspaces in indefinite complex
Euclidean space C

m+2
2 , is a connected, simply connected, irreducible Rie-

mannian symmetric space of noncompact type and with rank two. Let G =
SU2,m and K = S(U2·Um), and denote by g and k the corresponding Lie
algebra of the Lie group G and K, respectively. Let B be the Killing form of
g and denote by p the orthogonal complement of k in g with respect to B.
The resulting decomposition g = k ⊕ p is a Cartan decomposition of g. The
Cartan involution θ ∈ Aut(g) on su2,m is given by θ(A) = I2,mAI2,m, where

I2,m =
(

−I2 02,m

0m,2 Im

)
,

I2 and Im denote the identity 2 × 2-matrix and m × m-matrix, respectively.
Then, < X,Y >= −B(X, θY ) becomes a positive definite Ad(K)-invariant
inner product on g. Its restriction to p induces a metric g on SU2,m/S(U2·Um),
which is also known as the Killing metric on SU2,m/S(U2·Um). Throughout
this paper, we consider SU2,m/S(U2·Um) together with this particular Rie-
mannian metric g.

The Lie algebra k decomposes orthogonally into k = su2 ⊕ sum ⊕ u1,
where u1 is the one-dimensional center of k. The adjoint action of su2 on p
induces the quaternionic Kähler structure J on SU2,m/S(U2·Um), and the
adjoint action of

Z =

(
mi

m+2I2 02,m

0m,2
−2i
m+2Im

)
∈ u1

induces the Kähler structure J on SU2,m/S(U2·Um). By construction, J com-
mutes with each almost Hermitian structure Jν in J for ν = 1, 2, 3. Recall
that a canonical local basis {J1, J2, J3} of a quaternionic Kähler structure
J consists of three almost Hermitian structures J1, J2, J3 in J such that
JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν is to be taken modulo 3. The
tensor field JJν , which is locally defined on SU2,m/S(U2·Um), is self-adjoint
and satisfies (JJν)2 = I and tr(JJν) = 0, where I is the identity trans-
formation. For a nonzero tangent vector X, we define RX = {λX|λ ∈ R},
CX = RX ⊕ RJX, and HX = RX ⊕ JX.

We identify the tangent space ToSU2,m/S(U2·Um) of SU2,m/S(U2·Um)
at o with p in the usual way. Let a be a maximal abelian subspace of p. Since
SU2,m/S(U2·Um) has rank two, the dimension of any such subspace is two.
Every nonzero tangent vector X ∈ ToSU2,m/S(U2·Um) ∼= p is contained in
some maximal abelian subspace of p. Generically this subspace is uniquely
determined by X, in which case X is called regular. If there exist more than
one maximal abelian subspaces of p containing X, then X is called singular.
There is a simple and useful characterization of the singular tangent vectors:
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A nonzero tangent vector X ∈ p is singular if and only if JX ∈ JX or
JX ⊥ JX.

Up to scaling there exists a unique SU2,m-invariant Riemannian metric
g on SU2,m/S(U2·Um). Equipped with this metric, SU2,m/S(U2·Um) is a Rie-
mannian symmetric space of rank two which is both Kähler and quaternionic
Kähler. For computational reasons, we normalize g such that the minimal
sectional curvature of (SU2,m/S(U2·Um), g) is −4. The sectional curvature
K of the noncompact symmetric space SU2,m/S(U2·Um) equipped with the
Killing metric g is bounded by −4≤K≤0. The sectional curvature −4 is ob-
tained for all two-planes CX when X is a non-zero vector with JX ∈ JX.

When m = 1, G∗
2(C

3) = SU1,2/S(U1·U2) is isometric to the two-
dimensional complex hyperbolic space CH2 with constant holomorphic sec-
tional curvature −4.

When m = 2, we note that the isomorphism SO(4, 2) 	 SU2,2 yields an
isometry between G∗

2(C
4) = SU2,2/S(U2·U2) and the indefinite real Grass-

mann manifold G∗
2(R

6
2) of oriented two-dimensional linear subspaces of an

indefinite Euclidean space R
6
2. For this reason we assume m ≥ 3 from now

on, although many of the subsequent results also hold for m = 1, 2.
From now on, hereafter X,Y and Z always stand for any tangent vector

fields on M .
The Riemannian curvature tensor R̄ of SU2,m/S(U2·Um) is locally given

by

−2R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{g(JνY,Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ}

+
3∑

ν=1

{g(JνJY,Z)JνJX − g(JνJX,Z)JνJY },

where {J1, J2, J3} is any canonical local basis of J.

3. Fundamental formulas in SU2,m/S(U2·Um)

In this section, we derive some basic formulas and the Codazzi equation for
a real hypersurface in SU2,m/S(U2·Um) (see [13–15]).

Let M be a real hypersurface in complex hyperbolic two-plane Grass-
mannian SU2,m/S(U2·Um), that is, a submanifold in SU2,m/S(U2·Um) with
real codimension one. The induced Riemannian metric on M will also be
denoted by g, and ∇ denotes the Levi Civita covariant derivative of (M, g).
We denote by C and Q the maximal complex and quaternionic subbundle of
the tangent bundle TM of M , respectively. Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (3.1)



3394 H. Lee et al. MJOM

for any tangent vector field X of a real hypersurface M in
SU2,m/S(U2·Um), where φX denotes the tangential component of JX and
N a unit normal vector field of M in SU2,m/S(U2·Um).

From the Kähler structure J of SU2,m/S(U2·Um) there exists an almost
contact metric structure (φ, ξ, η, g) induced on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ) (3.2)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local
basis of J. Then, the quaternionic Kähler structure Jν of SU2,m/S(U2·Um),
together with the condition JνJν+1 = Jν+2 = −Jν+1Jν in section 1, induces
an almost contact metric 3-structure (φν , ξν , ην , g) on M as follows:

φ2
νX = −X + ην(X)ξν , ην(ξν) = 1, φνξν = 0,

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1 (3.3)

for any vector field X tangent to M . Moreover, from the commuting property
of JνJ = JJν , ν = 1, 2, 3 in Sect. 2 and (3.1), the relation between these two
contact metric structures (φ, ξ, η, g) and (φν , ξν , ην , g), ν = 1, 2, 3, can be
given by

φφνX = φνφX + ην(X)ξ − η(X)ξν ,

ην(φX) = η(φνX), φξν = φνξ. (3.4)

On the other hand, from the parallelism of Kähler structure J , that
is, ∇̃J = 0 and the quaternionic Kähler structure J, together with Gauss and
Weingarten formulas, it follows that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX, (3.5)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (3.6)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX

−g(AX,Y )ξν , (3.7)

for some 1-forms q1, q2, q3 on M .
Combining these formulas, we find the following:

∇X(φνξ) = ∇X(φξν) = (∇Xφ)ξν + φ(∇Xξν)
= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX

−g(AX, ξ)ξν + η(ξν)AX. (3.8)
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Finally, using the explicit expression for the Riemannian curvature ten-
sor R̄ of SU2,m/S(U2·Um) in [14], the Codazzi equation takes the form

−2(∇XA)Y + 2(∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY ) − η(Y )ην(φX)

}
ξν , (3.9)

for any vector fields X and Y on M .
On the other hand, by differentiating Aξ = αξ and using (3.9), we get

the following

g(φX, Y ) −
3∑

ν=1

{ην(X)ην(φY ) − ην(Y )ην(φX) − g(φνX,Y )ην(ξ)}

= g((∇XA)Y − (∇Y A)X, ξ)
= g((∇XA)ξ, Y ) − g((∇Y A)ξ,X)
= (Xα)η(Y ) − (Y α)η(X) + αg((Aφ + φA)X,Y ) − 2g(AφAX, Y ).(3.10)

Putting X = ξ gives

Y α = (ξα)η(Y ) + 2
3∑

ν=1

ην(ξ)ην(φY ). (3.11)

Then, substituting (3.11) into (3.10), we have

AφAY =
α

2
(Aφ + φA)Y +

3∑

ν=1

{
η(Y )ην(ξ)φξν + ην(ξ)ην(φY )ξ

}

−1
2
φY − 1

2

3∑

ν=1

{
ην(Y )φξν + ην(φY )ξν + ην(ξ)φνY

}
. (3.12)

By differentiating and using (3.4)–(3.6), we have

∇X(grad α) = X(ξα)ξ + (ξα)φAX

− 2
3∑

ν=1

{
qν+2(X)ην+1(ξ) − qν+1(X)ην+2(ξ) + 2ην(φAX)

}
φξν

− 2
3∑

ν=1

ην(ξ)
{

− qν+1(X)φν+2ξ + qν+2(X)φν+1ξ + ην(ξ)AX

−g(AX, ξ)ξν + φνφAX
}
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= X(ξα)ξ + (ξα)φAX − 4
3∑

ν=1

ην(φAX)φξν

− 2
3∑

ν=1

ην(ξ)
{

ην(ξ)AX − g(AX, ξ)ξν + φνφAX
}

.

By taking the skew-symmetric part to the above equation, we have

0 = X(ξα)η(Y ) − Y (ξα)η(X) + (ξα)g
(
(Aφ + φA)X,Y

)

−4
3∑

ν=1

{
ην(φAX)g(φξν , Y ) − ην(φAY )g(φξν ,X)

}

+2α
3∑

ν=1

ην(ξ)
{

η(X)ην(Y ) − η(Y )ην(X)
}

−2
3∑

ν=1

ην(ξ)
{

g(φνφAX, Y ) − g(φνφAY,X)
}

.

From this, by putting X = ξ we have the following

Y (ξα) = ξ(ξα)η(Y ) + 2α

3∑

ν=1

ην(ξ)ην(Y ) − 2
3∑

ν=1

ην(ξ)ην(AY ). (3.13)

From this, if we assume that ξα = 0, then it follows that
3∑

ν=1

ην(ξ)ην(AX) = α

3∑

ν=1

ην(ξ)ην(X).

Lemma 1. Let M be a Hopf real hypersurface in SU2,m/S(U2·Um). If the
principal curvature α is constant along the direction of ξ, then the distribution
Q or Q⊥ component of the structure vector field ξ is invariant by the shape
operator.

4. Proof of Theorem 1

Let M be a Hopf hypersurface in SU2,m/S(U2·Um) with

RξφAX = ARξφX. (C-1)

The structure Jacobi operator Rξ of M is defined by RξX = R(X, ξ)ξ for
any tangent vector X ∈ TpM , p ∈ M (see [1,7]).

Then for any tangent vector field X on M in SU2,m/S(U2·Um), we
calculate the structure Jacobi operator Rξ

2Rξ(X) = −X + η(X)ξ +
3∑

ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν

+3ην(φX)φνξ + ην(ξ)φνφX
}

+ 2αAX − 2η(AX)Aξ, (4.1)

where α denotes the Reeb curvature defined by g(Aξ, ξ).
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Lemma 2. Let M be a Hopf hypersurface in SU2,m/S(U2·Um) with the com-
muting condition RξφAX = ARξφX. If the smooth function α is constant
along the direction of ξ on M , then the Reeb vector field ξ belongs to either
the distribution Q or the distribution Q⊥.

Proof. To prove this lemma, without loss of generality, ξ may be written as

ξ = η(X0)X0 + η(ξ1)ξ1 (*)

where X0 (resp., ξ1) is a unit vector in Q (resp., Q⊥) and η(X0)η(ξ1) �= 0.
From (*) and φξ = 0, we have

⎧
⎨

⎩

φX0 = −η(ξ1)φ1X0,
φξ1 = φ1ξ = η(X0)φ1X0,
φ1φX0 = η1(ξ)X0.

(4.2)

Let U = {p ∈ M |α(p) �= 0} be an open subset of M . From now on, we
discuss our arguments on U.

By virtue of Lemma 1, ξα = 0 gives AX0 = αX0 and Aξ1 = αξ1. The
equation (3.12) yields αAφX0 = (α2−2η2(X0))φX0 by substituting X = X0.
Since α is non-vanishing on U, it becomes

AφX0 = σφX0, (4.3)

where σ = α2−2η2(X0)
α .

From (4.2) and (4.3), we have
⎧
⎨

⎩

Rξ(X0) = α2X0 − α2η(X0)ξ,
Rξ(ξ1) = α2ξ1 − α2η(ξ1)ξ,
Rξ(φX0) =

(
α2 − 4η2(X0)

)
φX0.

(4.4)

On U, substituting X by φX0 into (C-1), we have

X0 − η(X0)ξ = 0, (4.5)

which is a contradiction. Therefore, U = ∅, and thus it must be p ∈ M − U.
Since the set M − U = Int(M − U) ∪ ∂(M − U), we consider the following
two cases. Here Int (resp., ∂) denotes the interior (resp., the boundary) of
(M − U).

• Case 1 p ∈ Int(M − U).

If p ∈ Int(M − U) i.e., α(p) = 0, then it trivially holds by (3.11).
• Case 2 p ∈ ∂(M − U).

Since p ∈ ∂(M − U), there exists a sequence of points pn such that
pn → p with α(p) = 0 and α(pn) �= 0. Such a sequence will have an infinite
subsequence where η(ξ1) = 0 (in which case ξ ∈ Q at p, by the continuity)
or an infinite subsequence where η(X0) = 0 (in which case ξ ∈ Q⊥ at p).

Accordingly, we get a complete proof of our lemma. �
From Lemma 2, we consider the case that ξ belongs to the distribution

Q⊥. Thus without loss of generality, we may put ξ = ξ1.
Differentiating ξ = ξ1 along any direction X ∈ TM and using (3.5) and

(3.6), it gives us

2η3(AX)ξ2 − 2η2(AX)ξ3 + φ1AX − φAX = 0. (4.6)
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Then, using the symmetric (resp., skew-symmetric) property of the shape
operator A (resp., the structure tensor field φ), we also obtain

2η3(X)Aξ2 − 2η2(X)Aξ3 + Aφ1X − AφX = 0. (4.7)

Applying φ1 to (4.6), it implies

2η3(AX)ξ3 + 2η2(AX)ξ2 − AX + αη(X)ξ − φ1φAX = 0. (4.8)

On the other hand, replacing X = φX into (4.6), we have

− 2η2(X)Aξ2 − 2η3(X)Aξ3 + Aφ1φX − AX − αη(X)ξ = 0. (4.9)

Lemma 3. Let M be a Hopf hypersurface in SU2,m/S(U2·Um), m ≥ 3, sat-
isfying RξφA = ARξφ. If the Reeb vector field ξ belongs to the distribution
Q⊥, then the shape operator A commutes with the structure tensor field φ.

Proof. Applying ξ = ξ1 into right-hand side (resp., left-hand side) of (C-1),
we get

2RξφAX = −AφX + 2αA2φX − 2η3(X)Aξ2 + 2η2(X)Aξ3 − Aφ1X,

2ARξφX = −φAX + 2αAφAX − 2η3(AX)ξ2 + 2η2(AX)ξ3 − φ1AX.

Combining (4.6) and (4.7), the above equations become

RξφAX = −AφX + αA2φX,

ARξφX = −φAX + αAφAX.

Hence, (C-1) is equivalent to

Aφ − φA = αA(Aφ − φA) (4.10)

Taking the symmetric part of (4.10), we have

Aφ − φA = α(Aφ − φA)A. (4.11)

From this, the proof can be divided into the following three cases:
First, let us consider the open subset U = {p ∈ M |α(p) �= 0} of M .

Naturally we can apply (4.10) and (4.11) on the open subset U.

(Aφ − φA)AX = A(Aφ − φA)X.

Since the shape operator A and the tensor Aφ − φA are both symmetric
operators and commute with each other, there exists a common orthonormal
basis {Ei}i=1,...,4m−1 which gives a simultaneous diagonalization. Specifically,
we have

AEi = λiEi, (4.12)
(Aφ − φA)Ei = βiEi. (4.13)

Taking the inner product with Ei into (4.13), we have

βig(Ei, Ei) = g
(
(Aφ − φA)Ei, Ei

)
= −2λig(φEi, Ei) = 0. (4.14)

Since g(Ei, Ei) = 1, βi = 0 for all i = 1, 2, ..., 4m − 1. Hence AφX = φAX
for any tangent vector field X on U.

Next, if p ∈ Int(M − U), then α(p) = 0. From this, the equation (4.11)
gives (Aφ − φA)X(p) = 0.
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Finally, let us assume that p ∈ ∂(M − U), where ∂(M − U) is the
boundary of M − U. Then there exists a subsequence {pn} ⊂ U such that
pn → p. Since (Aφ − φA)X(pn) = 0 on the open subset U in M , by the
continuity we also get (Aφ − φA)X(p) = 0.

Summing up these observations, it is natural that the shape operator A
commutes with the structure tensor field φ under our assumption. �

By [11], we assert M with the assumptions given in Lemma 3 is locally
congruent to one of the following hypersurfaces:
(TA) a tube over a totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um)

or,
(HA) a horosphere in SU2,m/S(U2·Um) whose center at infinity is singular

and of type JX ∈ JX.
In [11], Suh gave some information related to the shape operator A of

TA and HA as follows:

Proposition A. Let M be a connected real hypersurface in complex hyperbolic
two-plane Grassamannian SU2,m/S(U2Um), m ≥ 3. Assume that the maxi-
mal complex subbundle C of TM and the maximal quaternionic subbundle Q
of TM are both invariant under the shape operator of M . If JN ∈ JN , then
one of the following statements holds:
(TA) M has exactly four distinct constant principal curvatures

α = 2 coth(2r), β = coth(r), λ1 = tanh(r), λ2 = 0,

and the corresponding principal curvature spaces are

Tα = TM � C, Tβ = C � Q, Tλ1 = E−1, Tλ2 = E+1.

The principal curvature spaces Tλ1 and Tλ2 are complex (with respect
to J) and totally complex (with respect to J).

(HA) M has exactly three distinct constant principal curvatures

α = 2, β = 1, λ = 0

with corresponding principal curvature spaces

Tα = TM � C, Tβ = (C � Q) ⊕ E−1, Tλ = E+1.

Here, E+1 and E−1 are the eigenbundles of φφ1|Q with respect to the
eigenvalues +1 and −1, respectively.

Since the symmetric tensor Aφ − φA vanishes identically on TA (resp.
HA), it trivially satisfies (4.10). Hence, we assert that TA (resp., HA) in
complex hyperbolic two-plane Grassmannians SU2,m/S(U2·Um) has the our
commuting condition (C-1) (see [11]).

Next, due to Lemma 2, let us suppose that ξ ∈ Q (i.e., JN ⊥ JN).
By virtue of the result in [13], we assert that a Hopf hypersurface M

in complex hyperbolic two-plane Grassmannians SU2,m/S(U2·Um) satisfying
the hypotheses in Theorem 1 is locally congruent to one of the following real
hypersurfaces
(TB) An open part of a tube around a totally geodesic quaternionic hyper-

bolic space HHn in SU2,2n/S(U2U2n), m = 2n,



3400 H. Lee et al. MJOM

(HB) An open part of a horosphere in SU2,m/S(U2Um) whose center at
infinity is singular and of type JN ⊥ JN , or

(E) The normal bundle νM of M consists of singular tangent vectors of
type JX ⊥ JX,

when ξ ∈ Q. Hereafter, the model spaces of TB , HB or E are denoted by
MB. Let us check whether the shape operator A of model spaces is MB that
satisfy our conditions, conversely. To do this, let us introduce the following
proposition given by Suh [13].

Proposition B. Let M be a connected hypersurface in SU2,m/S(U2Um), m ≥
3. Assume that the maximal complex subbundle C of TM and the maximal
quaternionic subbundle Q of TM are both invariant under the shape operator
of M . If JN ⊥ JN , then one of the following statements holds:
(TB) M has five (four for r =

√
2tanh−1(1/

√
3) in which case α = λ2)

distinct constant principal curvatures

α =
√

2 tanh(
√

2r), β =
√

2 coth(
√

2r), γ = 0,

λ1 =
1√
2

tanh(
1√
2
r), λ2 =

1√
2

coth(
1√
2
r),

and the corresponding principal curvature spaces are

Tα = TM � C, Tβ = TM � Q, Tγ = J(TM � Q) = JTβ .

The principal curvature spaces Tλ1 and Tλ2 are invariant under J and
are mapped onto each other by J . In particular, the quaternionic di-
mension of SU2,m/S(U2Um) must be even.

(HB) M has exactly three distinct constant principal curvatures

α = β =
√

2, γ = 0, λ =
1√
2

with corresponding principal curvature spaces

Tα = TM � (C ∩ Q), Tγ = J(TM � Q), Tλ = C ∩ Q ∩ JQ.

(E) M has at least four distinct principal curvatures, three of which are
given by

α = β =
√

2, γ = 0, λ =
1√
2

with corresponding principal curvature spaces

Tα = TM � (C ∩ Q), Tγ = J(TM � Q), Tλ ⊂ C ∩ Q ∩ JQ.

If μ is another (possibly nonconstant) principal curvature function,
then JTμ ⊂ Tλ and JTμ ⊂ Tλ. Thus, the corresponding multiplicities
are

m(α) = 4, m(γ) = 3, m(λ), m(μ).

Let us assume that the structure Jacobi operator Rξ of MB satisfies the
property (C-1).

The tangent space of MB can be split into

TM = Tα1 ⊕ Tα2 ⊕ Tα3 ⊕ Tα4 ⊕ Tα5 ,
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where Tα1 = [ξ], Tα2 = span{ξ1, ξ2, ξ3}, Tα3 = span{φξ1, φξ2, φξ3} and Tα4 ⊕
Tα5 is the orthogonal complement of Tα1 ⊕ Tα2 ⊕ Tα3 in TM . Since ξ ∈ Q
and φφνξ = φ2ξν = −ξν , we have Rξ(φξ2) = −2φ2ξ. From this and α3 = 0
for all MB , our commuting condition (C-1) becomes

RξφAξ2 − ARξφξ2 = −2α2φξ2.

It implies that the eigenvalue α2 vanishes, since φξ2 is a unit tangent vector
field. But in Proposition B, for TB (resp. HB or E) we see that the eigenvalue
α2 = β =

√
2 coth(

√
2r) (resp. α2 = α = 1√

2
) is non-vanishing. This gives us

a contradiction.

5. Proof of Theorem 2

In this section, using geometric quantities in [3–5,13–15], we give a complete
proof of Theorem 2. To prove it, we assume that M is a Hopf hypersurface
in SU2,m/S(U2·Um) with commuting structure Jacobi operator and Ricci
tensor, that is,

(Rξφ)SX = S(Rξφ)X. (C-2)

From the definition of the Ricci tensor and the fundamental formulas
in [15, Section 2], the Ricci tensor S of M in SU2,m/S(U2·Um) is given by

2SX = −(4m + 7)X + 3η(X)ξ + 2hAX − 2A2X

+
3∑

ν=1

{3ην(X)ξν − ην(ξ)φνφX + ην(φX)φνξ + η(X)ην(ξ)ξν},(5.1)

where h denotes the trace of the shape operator A.
Using equations (C-2) and (5.1), we prove that the Reeb vector field ξ

of M belongs to either the distribution Q or the distribution Q⊥.

Lemma 4. Let M be a Hopf hypersurface in SU2,m/S(U2·Um), m ≥ 3, sat-
isfying (C-2). If the principal curvature α = g(Aξ, ξ) is constant along the
direction of ξ, then ξ belongs to either the distribution Q or the distribu-
tion Q⊥.

Proof. To prove this lemma, for some unit vectors X0 ∈ Q, ξ1 ∈ Q⊥, we put

ξ = η(X0)X0 + η(ξ1)ξ1, (*)

where η(X0)η(ξ1) �= 0 is the assumption we will disprove in this proof by
contradiction.

Let U = {p ∈ M |α(p) �= 0} be the open subset of M . From now on, we
discuss our arguments on U.

By virtue of Lemma 1, ξα = 0 gives AX0 = αX0 and Aξ1 = αξ1. From
(5.1), we have

⎧
⎪⎪⎨

⎪⎪⎩

SφX0 = κφX0,
SX0 = (−2m − 4 + hα − α2)X0 + 2η(X0)ξ,
Sξ1 = (−2m − 2 + hα − α2)ξ1 + 2η1(ξ)ξ,
Sξ = (−2m − 2 + hα − α2)ξ + 2η1(ξ)ξ1,

(5.2)
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where κ := −2m − 4 + hσ − σ2 and σ = α2−2η2(X0)
α on U.

Put X = φX0 into (C-2), we have

κRξ(X0) = SRξ(X0). (5.3)

Taking the inner product of (5.3) with ξ and using (4.4) and (5.2), we have
−2α2η2(ξ1)η(X0) = 0. It implies that U = ∅. Thus it must be p ∈ M − U.
The set M − U = Int(M − U) ∪ ∂(M − U), where Int (resp., ∂) denotes the
interior (resp., the boundary) of M −U, we consider the following two cases:

• Case 1 p ∈ Int(M − U)

If p ∈ Int(M − U), then α = 0. Our lemma was proved on Int(M − U)
by the equation (3.11) and (*).

• Case 2 p ∈ ∂(M − U)

Since p ∈ ∂(M − U), there exists a sequence of points pn ∈ U such that
pn → p with α(p) = 0 and α(pn) �= 0. Such a sequence will have an infinite
subsequence where η(ξ1) = 0 (in which case ξ ∈ Q at p, by the continuity)
or an infinite subsequence where η(X0) = 0 (in which case ξ ∈ Q⊥ at p).
Accordingly, we get a complete proof of the Lemma. �

Now, we shall divide our consideration into two cases, ξ belongs to either
the distribution Q or the distribution Q⊥, respectively.

Let us consider the case ξ ∈ Q⊥. We may put ξ = ξ1 ∈ Q⊥ for the sake
of convenience. Then, (5.1) is simplified:

2SX = −(4m + 7)X + 7η(X)ξ + 2η2(X)ξ2
+2η3(X)ξ3 − φ1φX + 2hAX − 2A2X. (5.4)

Replacing X by AX into (5.4) and using (4.8), we obtain

2SAX = −(4m + 6)AX + 6αη(X)ξ + 2hA2X − 2A3X (5.5)

Applying the shape operator A to (5.4) and using (4.9), we get

2ASX = −(4m + 6)AX + 6αη(X)ξ + 2hA2X − 2A3X. (5.6)

From (5.5) and (5.6), we see that the Ricci tensor S commutes with the shape
operator A, that is,

SA = AS. (5.7)

On the other hand, the equations (4.6) and (5.4) give us

2η3(SX)ξ2 − 2η2(SX)ξ3 + φ1SX − φSX

= (2m + 4){2η3(X)ξ2 − 2η2(X)ξ3 + φX − φ1X}
:= Rem(X). (5.8)

Taking the symmetric part of (5.8), we obtain

2η3(X)Sξ2 − 2η2(X)Sξ3 + Sφ1X − SφX = Rem(X). (5.9)

Lemma 5. Let M be a Hopf hypersurface in SU2,m/S(U2·Um) satisfying
(C-2). If ξ ∈ Q⊥, then Sφ = φS.
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Proof. By virtue of equation (5.8) and (5.9), we obtain the left and right
sides of (C-2), respectively, as follows:

2RξφSX = −φSX + 2αAφSX − 2η3(SX)ξ2 + 2η2(SX)ξ3 − φ1SX

= −2φSX + 2αAφSX − Rem(X),

and

2SRξφX = −SφX + 2αSAφX − 2η3(X)Sξ2 + 2η2(X)Sξ3 − Sφ1X

= −2SφX + 2αSAφX − Rem(X).

That is,

RξφSX = −φSX + αAφSX − 1
2
Rem(X) (5.10)

and
SRξφX = −SφX + αSAφX − 1

2
Rem(X). (5.11)

From these two equations, the condition (C-2) is equivalent to

(Sφ − φS)X = α(SAφ − AφS)X
= αA(Sφ − φS)X, (5.12)

by virtue of our assertion that the shape operator A commutes with the Ricci
tensor S.

Taking the symmetric part of (5.12), we have

(Sφ − φS)X = α(Sφ − φS)AX (5.13)

for all tangent vector fields X on M .
From (5.12) and (5.13), we know

αA(Sφ − φS) = α(Sφ − φS)A. (5.14)

Let U = {p ∈ M |α(p) �= 0} be an open subset of M . Then (5.14)
implies the shape operator A and the symmetric tensor Sφ − φS commute
with each other on U. Hence, they are simultaneous diagonalizable and there
exists a common orthonormal basis {E1, E2, ..., E4m−1} such that the shape
operator A and the tensor Sφ − φS both can be diagonalizable.

AEi = λiEi, (5.15)

(Sφ − φS)Ei =
∐

βiEi, (5.16)

Combining equations in (5.1), we get

SφX − φSX = hAφX − A2φX − hφAX + φA2X. (5.17)

Using (5.15), (5.16) and (5.17), we obtain

(Sφ − φS)Ei = hAφEi − A2φEi − hλiφEi + λ2
i φEi. (5.18)

Taking the inner product with Ei into (5.18), we have

βig(Ei, Ei) = hλig(φEi, Ei) − λ2
i g(φEi, Ei) − hλig(φEi, Ei) + λ2

i g(φEi, Ei) = 0.

Since g(Ei, Ei) = 1, we get βi = 0 for all i = 1, 2, ..., 4m−1. This is equivalent
to (Sφ−φS)Ei = 0 for all i = 1, 2, ..., 4m−1. It follows that SφX = φSX for
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any tangent vector field X on U. Next, if p ∈ Int(M − U), then we see that
α(p) = 0. From this, the equation (5.12) gives (Sφ−φS) vanishes identically
on Int(M − U).

Finally, let us assume that p ∈ ∂(M − U), where ∂(M − U) is the
boundary of M − U. Then, there exists a subsequence {pn} ⊂ U such that
pn → p. Since (Sφ − φS)X(pn) = 0 on the open subset U in M , by the
continuity we also get (Sφ − φS)X(p) = 0. �

By virtue of the result given by Suh in [14], we assert that if ξ ∈ Q⊥,
then a Hopf hypersurface M in SU2,m/S(U2·Um) satisfying (C-2) is locally
congruent to one of the following hypersurfaces:

(TA) a tube over a totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um)
or,

(HA) a horosphere in SU2,m/S(U2·Um) whose center at infinity is singular
and of type JX ∈ JX.

Moreover, when ξ ∈ Q⊥, (C-2) is equivalent to (5.12). Since the sym-
metric tensor (Sφ−φS) vanishes identically on TA (resp. HA), it trivially sat-
isfies (5.12). Hence, we assert that TA (resp., HA) in complex hyperbolic two-
plane Grassmannians SU2,m/S(U2·Um) has our commuting condition (C-2)
(see [14]).

When ξ ∈ Q, a Hopf hypersurface M in SU2,m/S(U2·Um) satisfying
(C-2) is locally congruent to a hypersurface of type MB by [13].

From now on, let us show whether model spaces MB satisfy the condi-
tion (C-2) or not. Then, the tangent space of MB can be split into

TMB = Tα1 ⊕ Tα2 ⊕ Tα3 ⊕ Tα4 ⊕ Tα5 .

where Tα1 = [ξ], Tα2 = span{ξ1, ξ2, ξ3}, Tα3 = span{φξ1, φξ2, φξ3} and Tα4 ⊕
Tα5 is the orthogonal complement of Tα1 ⊕Tα2 ⊕Tα3 in TM such that JTα5 ⊂
Tα4 (see [14]).

On TpMB , p ∈ MB , the equations (5.1) and (4.1) are reduced to the
following equations, respectively:

2SX = −(4m + 7)X + 3η(X)ξ + 2hAX − 2A2X

+
3∑

ν=1

{3ην(X)ξν + η(φνX)φνξ},

2Rξ(X) = −X + η(X)ξ + 2αAX − 2α2η(X)ξ

+
3∑

ν=1

{ην(X)ξν + 3ην(φX)φνξ}.

From [14, Proposition 5.1], we obtain the following

SX =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−2m − 2 + hα1 − α2
1)ξ if X = ξ ∈ Tα1

(−2m − 2 + hα2 − α2
2)ξ	 if X = ξ	 ∈ Tα2

(−2m − 4)φξ	 if X = φξ	 ∈ Tα3

(−2m − 7
2 + hα4 − λ2

4)X if X ∈ Tα4

(−2m − 7
2 + hα5 − α2

5)X if X ∈ Tα5

(5.19)
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Rξ(X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if X = ξ ∈ Tα1

α1α2ξ	 if X = ξ	 ∈ Tα2

(−2 + α1α3)φξ	 if X = φξ	 ∈ Tα3

(− 1
2 + α1α4)X if X ∈ Tα4

(− 1
2 + α1α5)X if X ∈ Tα5 .

(5.20)

To check whether TB, HB or E model spaces satisfy (C-2) or not, we
should verify the following equation vanishes for all cases.

G(X) := (Rξφ)SX − S(Rξφ)X. (5.21)

Putting X = ξ1 ∈ Tα3 into (5.21), we have G(ξ1) = −2(2 + α2h − α2
2)φξ1

which derives
2 + α2h − α2

2 = 0. (5.22)

• Case 1. Tube TB

In this case, we get α1 = α, α2 = β, α3 = γ = 0, α4 = λ and α5 = μ.
By calculation, we have λ+μ = β on TB . Thus we obtain h = α+3β +

(4n − 4)(λ + μ) = α + (4n − 1)β, where m = 2n. Then (5.22) is equivalent to
4 + 2(2n − 1)β2 > 0, which is a contradiction.

• Case 2. Horoshere HB

On HB , α1 =
√

2, α2 =
√

2, α3 = γ = 0, α4 = 1√
2

and α5 = 1√
2
. Thus

(5.22) gives h = 0. Since h = α1 + 3α2 + 3α3 + (4n − 4)(α4 + α5), we have
4
√

2n = 0 which is a contradiction.
• Case 3. Exceptional case E

For X ∈ Tα5 ⊂ TE , G(X) = − 1
2 (α5 − α4)(α5 + α4)φX. On TE we have

α1 = α =
√

2, α4 = λ = 1√
2

and α5 = μ = ± 1√
2
. Because μ �= λ, it should

be μ = − 1√
2
. Moreover, since JTμ ⊂ Tλ and JTμ ⊂ Tλ, we see that the

corresponding multiplicities of the eigenvalues λ and μ satisfy m(λ) ≥ m(μ).
Since m(α) = 4, m(γ) = 3 and m(λ) + m(μ) = 4m − 8 on E , the trace of the
shape operator A denoted by h becomes h = 4α + 3γ + m(λ)λ + m(μ)μ =
4
√

2 + 1√
2
(m(λ) − m(μ)), which makes a contradiction. In fact, since we

obtained h = 0 on Tγ ∈ TE , it yields (m(λ) − m(μ)) = −8 < 0. Thus, this
case does not occur.

This shows that hypersurfaces of TB , HB or E cannot satisfy the con-
dition (C-2), and therefore in the situation of Theorem 2, the case X ∈ Q
cannot occur. This completes the proof of Theorem 2.
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